Found 45 results

Sort: relevance | popular | newest
XEP-0030 implementation allowing other modules to register themselves so remote entities can discover them
Last Release on Jun 9, 2010
WARC Indexer
Last Release on Sep 19, 2018
Computation of local false discovery rates.
Last Release on Jan 20, 2018
Class implementing the predictive apriori algorithm for mining association rules. It searches with an increasing support threshold for the best 'n' rules concerning a support-based corrected confidence value. For more information see: Tobias Scheffer: Finding Association Rules That Trade Support Optimally against Confidence. In: 5th European Conference on Principles of Data Mining and Knowledge Discovery, 424-435, 2001.
Last Release on Aug 4, 2014
LBE is an efficient procedure for estimating the proportion of true null hypotheses, the false discovery rate (and so the q-values) in the framework of estimating procedures based on the marginal distribution of the p-values without assumption for the alternative hypothesis.
Last Release on Jan 20, 2018
Classifier for incremental learning of large datasets by way of racing logit-boosted committees. For more information see: Eibe Frank, Geoffrey Holmes, Richard Kirkby, Mark Hall: Racing committees for large datasets. In: Proceedings of the 5th International Conferenceon Discovery Science, 153-164, 2002.
Last Release on Apr 26, 2012
Aimed at applying the Harvest classification tree algorithm, modified algorithm of classic classification tree.The harvested tree has advantage of deleting redundant rules in trees, leading to a simplify and more efficient tree model.It was firstly used in drug discovery field, but it also performs well in other kinds of data, especially when the region of a class is disconnected. This package also improves the basic harvest classification tree algorithm by extending the field of data of algorithm to both ...
Last Release on Jan 20, 2018

Contains functions for a two-stage multiple testing procedure for grouped hypothesis, aiming at controlling both the total posterior false discovery rate and within-group false discovery rate.
Last Release on Jan 20, 2018
The OPTICS and DBScan clustering algorithms. Martin Ester, Hans-Peter Kriegel, Joerg Sander, Xiaowei Xu: A Density-Based Algorithm for Discovering Clusters in Large Spatial Databases with Noise. In: Second International Conference on Knowledge Discovery and Data Mining, 226-231, 1996; Mihael Ankerst, Markus M. Breunig, Hans-Peter Kriegel, Joerg Sander: OPTICS: Ordering Points To Identify the Clustering Structure. In: ACM SIGMOD International Conference on Management of Data, 49-60, 1999.
Last Release on Apr 1, 2014
This package contains a set of functions that calculates appropriate sample sizes for one-sample t-tests, two-sample t-tests, and F-tests for microarray experiments based on desired power while controlling for false discovery rates. For all tests, the standard deviations (variances) among genes can be assumed fixed or random. This is also true for effect sizes among genes in one-sample and two sample experiments. Functions also output a chart of power versus sample size, a table of power at different sample ...
Last Release on Jan 20, 2018